Examples#
Below are a collection of example netplan configurations for common scenarios. If you see a scenario missing or have one to contribute, please file a bug against this documentation with the example.
To configure netplan, save configuration files under /etc/netplan/
with a
.yaml
extension (e.g. /etc/netplan/config.yaml
), then run
sudo netplan apply
. This command parses and applies the configuration to the
system. Configuration written to disk under /etc/netplan/
will persist between
reboots.
Also, see /examples on GitHub.
Using DHCP and static addressing#
To let the interface named enp3s0
get an address via DHCP, create a YAML file with the following:
network:
version: 2
renderer: networkd
ethernets:
enp3s0:
dhcp4: true
To instead set a static IP address, use the addresses key, which takes a list of (IPv4 or IPv6), addresses along with the subnet prefix length (e.g. /24). DNS information can be provided as well, and the gateway can be defined via a default route:
network:
version: 2
renderer: networkd
ethernets:
enp3s0:
addresses:
- 10.10.10.2/24
nameservers:
search: [mydomain, otherdomain]
addresses: [10.10.10.1, 1.1.1.1]
routes:
- to: default
via: 10.10.10.1
Connecting multiple interfaces with DHCP#
Many systems now include more than one network interface. Servers will commonly need to connect to multiple networks, and may require that traffic to the Internet goes through a specific interface despite all of them providing a valid gateway.
One can achieve the exact routing desired over DHCP by specifying a metric for the routes retrieved over DHCP, which will ensure some routes are preferred over others. In this example, ‘enred’ is preferred over ‘engreen’, as it has a lower route metric:
network:
version: 2
ethernets:
enred:
dhcp4: yes
dhcp4-overrides:
route-metric: 100
engreen:
dhcp4: yes
dhcp4-overrides:
route-metric: 200
Connecting to an open wireless network#
Netplan easily supports connecting to an open wireless network (one that is not secured by a password), only requiring that the access point is defined:
network:
version: 2
wifis:
wl0:
access-points:
opennetwork: {}
dhcp4: yes
Connecting to a WPA Personal wireless network#
Wireless devices use the ‘wifis’ key and share the same configuration options with wired ethernet devices. The wireless access point name and password should also be specified:
network:
version: 2
renderer: networkd
wifis:
wlp2s0b1:
dhcp4: no
dhcp6: no
addresses: [192.168.0.21/24]
nameservers:
addresses: [192.168.0.1, 8.8.8.8]
access-points:
"network_ssid_name":
password: "**********"
routes:
- to: default
via: 192.168.0.1
Connecting to WPA Enterprise wireless networks#
It is also common to find wireless networks secured using WPA or WPA2 Enterprise, which requires additional authentication parameters.
For example, if the network is secured using WPA-EAP and TTLS:
network:
version: 2
wifis:
wl0:
access-points:
workplace:
auth:
key-management: eap
method: ttls
anonymous-identity: "@internal.example.com"
identity: "joe@internal.example.com"
password: "v3ryS3kr1t"
dhcp4: yes
Or, if the network is secured using WPA-EAP and TLS:
network:
version: 2
wifis:
wl0:
access-points:
university:
auth:
key-management: eap
method: tls
anonymous-identity: "@cust.example.com"
identity: "cert-joe@cust.example.com"
ca-certificate: /etc/ssl/cust-cacrt.pem
client-certificate: /etc/ssl/cust-crt.pem
client-key: /etc/ssl/cust-key.pem
client-key-password: "d3cryptPr1v4t3K3y"
dhcp4: yes
Many different modes of encryption are supported. See the Netplan reference page.
Using multiple addresses on a single interface#
The addresses key can take a list of addresses to assign to an interface:
network:
version: 2
renderer: networkd
ethernets:
enp3s0:
addresses:
- 10.100.1.37/24
- 10.100.1.38/24:
label: "enp3s0:0"
- 10.100.1.39/24:
label: "enp3s0:some-label"
routes:
- to: default
via: 10.100.1.1
Using multiple addresses with multiple gateways#
Similar to the example above, interfaces with multiple addresses can be configured with multiple gateways, and static DNS nameservers (Google DNS for this example):
network:
version: 2
renderer: networkd
ethernets:
enp3s0:
addresses:
- 10.0.0.10/24
- 11.0.0.11/24
nameservers:
addresses:
- 8.8.8.8
- 8.8.4.4
routes:
- to: default
via: 10.0.0.1
metric: 200
- to: default
via: 11.0.0.1
metric: 300
We configure individual routes to default (or 0.0.0.0/0) using the address of the gateway for the subnet. The metric
value should be adjusted so the routing happens as expected.
DHCP can be used to receive one of the IP addresses for the interface. In this case, the default route for that address will be automatically configured with a metric
value of 100.
Using Network Manager as a renderer#
Netplan supports both networkd and Network Manager as backends. You can specify which network backend should be used to configure particular devices by using the renderer
key. You can also delegate all configuration of the network to Network Manager itself by specifying only the renderer
key:
network:
version: 2
renderer: NetworkManager
Configuring interface bonding#
Bonding is configured by declaring a bond interface with a list of physical interfaces and a bonding mode. Below is an example of an active-backup bond that uses DHCP to obtain an address:
network:
version: 2
renderer: networkd
bonds:
bond0:
dhcp4: yes
interfaces:
- enp3s0
- enp4s0
parameters:
mode: active-backup
primary: enp3s0
Below is an example of a system acting as a router with various bonded interfaces and different types. Note the ‘optional: true’ key declarations that allow booting to occur without waiting for those interfaces to activate fully.
network:
version: 2
renderer: networkd
ethernets:
enp1s0:
dhcp4: no
enp2s0:
dhcp4: no
enp3s0:
dhcp4: no
optional: true
enp4s0:
dhcp4: no
optional: true
enp5s0:
dhcp4: no
optional: true
enp6s0:
dhcp4: no
optional: true
bonds:
bond-lan:
interfaces: [enp2s0, enp3s0]
addresses: [192.168.93.2/24]
parameters:
mode: 802.3ad
mii-monitor-interval: 1
bond-wan:
interfaces: [enp1s0, enp4s0]
addresses: [192.168.1.252/24]
nameservers:
search: [local]
addresses: [8.8.8.8, 8.8.4.4]
parameters:
mode: active-backup
mii-monitor-interval: 1
gratuitious-arp: 5
routes:
- to: default
via: 192.168.1.1
bond-conntrack:
interfaces: [enp5s0, enp6s0]
addresses: [192.168.254.2/24]
parameters:
mode: balance-rr
mii-monitor-interval: 1
Configuring network bridges#
To create a very simple bridge consisting of a single device that uses DHCP, write:
network:
version: 2
renderer: networkd
ethernets:
enp3s0:
dhcp4: no
bridges:
br0:
dhcp4: yes
interfaces:
- enp3s0
A more complex example, to get libvirtd to use a specific bridge with a tagged vlan, while continuing to provide an untagged interface as well would involve:
network:
version: 2
renderer: networkd
ethernets:
enp0s25:
dhcp4: true
bridges:
br0:
addresses: [ 10.3.99.25/24 ]
interfaces: [ vlan15 ]
vlans:
vlan15:
accept-ra: no
id: 15
link: enp0s25
Then libvirtd would be configured to use this bridge by adding the following content to a new XML file under /etc/libvirtd/qemu/networks/
. The name of the bridge in the <bridge> tag as well as in <name> need to match the name of the bridge device configured using netplan:
<network>
<name>br0</name>
<bridge name='br0'/>
<forward mode="bridge"/>
</network>
Attaching VLANs to network interfaces#
To configure multiple VLANs with renamed interfaces:
network:
version: 2
renderer: networkd
ethernets:
mainif:
match:
macaddress: "de:ad:be:ef:ca:fe"
set-name: mainif
addresses: [ "10.3.0.5/23" ]
nameservers:
addresses: [ "8.8.8.8", "8.8.4.4" ]
search: [ example.com ]
routes:
- to: default
via: 10.3.0.1
vlans:
vlan15:
id: 15
link: mainif
addresses: [ "10.3.99.5/24" ]
vlan10:
id: 10
link: mainif
addresses: [ "10.3.98.5/24" ]
nameservers:
addresses: [ "127.0.0.1" ]
search: [ domain1.example.com, domain2.example.com ]
Reaching a directly connected gateway#
This allows setting up a default route, or any route, using the “on-link” keyword where the gateway is an IP address that is directly connected to the network even if the address does not match the subnet configured on the interface.
network:
version: 2
renderer: networkd
ethernets:
ens3:
addresses: [ "10.10.10.1/24" ]
routes:
- to: default # or 0.0.0.0/0
via: 9.9.9.9
on-link: true
For IPv6 the config would be very similar, with the notable difference being an additional scope: link host route to the router’s address required:
network:
version: 2
renderer: networkd
ethernets:
ens3:
addresses: [ "2001:cafe:face:beef::dead:dead/64" ]
routes:
- to: "2001:cafe:face::1/128"
scope: link
- to: default # or "::/0"
via: "2001:cafe:face::1"
on-link: true
Configuring source routing#
Route tables can be added to particular interfaces to allow routing between two networks:
In the example below, ens3 is on the 192.168.3.0/24 network and ens5 is on the 192.168.5.0/24 network. This enables clients on either network to connect to the other and allow the response to come from the correct interface.
Furthermore, the default route is still assigned to ens5 allowing any other traffic to go through it.
network:
version: 2
renderer: networkd
ethernets:
ens3:
addresses:
- 192.168.3.30/24
dhcp4: no
routes:
- to: 192.168.3.0/24
via: 192.168.3.1
table: 101
routing-policy:
- from: 192.168.3.0/24
table: 101
ens5:
addresses:
- 192.168.5.24/24
dhcp4: no
routes:
- to: default
via: 192.168.5.1
- to: 192.168.5.0/24
via: 192.168.5.1
table: 102
routing-policy:
- from: 192.168.5.0/24
table: 102
Configuring a loopback interface#
Networkd does not allow creating new loopback devices, but a user can add new addresses to the standard loopback interface, lo, in order to have it considered a valid address on the machine as well as for custom routing:
network:
version: 2
renderer: networkd
ethernets:
lo:
addresses: [ "127.0.0.1/8", "::1/128", "7.7.7.7/32" ]
Integration with a Windows DHCP Server#
For networks where DHCP is provided by a Windows Server using the dhcp-identifier key allows for interoperability:
network:
version: 2
ethernets:
enp3s0:
dhcp4: yes
dhcp-identifier: mac
Connecting an IP tunnel#
Tunnels allow an administrator to extend networks across the Internet by configuring two endpoints that will connect a special tunnel interface and do the routing required. Netplan supports SIT, GRE, IP-in-IP (ipip, ipip6, ip6ip6), IP6GRE, VTI and VTI6 tunnels.
A common use of tunnels is to enable IPv6 connectivity on networks that only support IPv4. The example below show how such a tunnel might be configured.
Here, 1.1.1.1 is the client’s own IP address; 2.2.2.2 is the remote server’s IPv4 address, “2001:dead:beef::2/64” is the client’s IPv6 address as defined by the tunnel, and “2001:dead:beef::1” is the remote server’s IPv6 address.
Finally, “2001:cafe:face::1/64” is an address for the client within the routed IPv6 prefix:
network:
version: 2
ethernets:
eth0:
addresses:
- 1.1.1.1/24
- "2001:cafe:face::1/64"
routes:
- to: default
via: 1.1.1.254
tunnels:
he-ipv6:
mode: sit
remote: 2.2.2.2
local: 1.1.1.1
addresses:
- "2001:dead:beef::2/64"
routes:
- to: default
via: "2001:dead:beef::1"
Configuring SR-IOV Virtual Functions#
For SR-IOV network cards, it is possible to dynamically allocate Virtual Function interfaces for every configured Physical Function. In netplan, a VF is defined by having a link: property pointing to the parent PF.
network:
version: 2
ethernets:
eno1:
mtu: 9000
enp1s16f1:
link: eno1
addresses : [ "10.15.98.25/24" ]
vf1:
match:
name: enp1s16f[2-3]
link: eno1
addresses : [ "10.15.99.25/24" ]
Complex example#
This is a complex example which shows most available features
network:
version: 2
# if specified, can only realistically have that value, as networkd cannot
# render wifi/3G.
renderer: NetworkManager
ethernets:
# opaque ID for physical interfaces, only referred to by other stanzas
id0:
match:
macaddress: 00:11:22:33:44:55
wakeonlan: true
dhcp4: true
addresses:
- 192.168.14.2/24
- 192.168.14.3/24
- "2001:1::1/64"
nameservers:
search: [foo.local, bar.local]
addresses: [8.8.8.8]
routes:
- to: default
via: 192.168.14.1
- to: default
via: "2001:1::2"
- to: 0.0.0.0/0
via: 11.0.0.1
table: 70
on-link: true
metric: 3
routing-policy:
- to: 10.0.0.0/8
from: 192.168.14.2/24
table: 70
priority: 100
- to: 20.0.0.0/8
from: 192.168.14.3/24
table: 70
priority: 50
# only networkd can render on-link routes and routing policies
renderer: networkd
lom:
match:
driver: ixgbe
# you are responsible for setting tight enough match rules
# that only match one device if you use set-name
set-name: lom1
dhcp6: true
switchports:
# all cards on second PCI bus unconfigured by
# themselves, will be added to br0 below
match:
name: enp2*
mtu: 1280
wifis:
all-wlans:
# useful on a system where you know there is
# only ever going to be one device
match: {}
access-points:
"Joe's home":
# mode defaults to "infrastructure" (client)
password: "s3kr1t"
# this creates an AP on wlp1s0 using hostapd
# no match rules, thus the ID is the interface name
wlp1s0:
access-points:
"guest":
mode: ap
# no WPA config implies default of open
bridges:
# the key name is the name for virtual (created) interfaces
# no match: and set-name: allowed
br0:
# IDs of the components; switchports expands into multiple interfaces
interfaces: [wlp1s0, switchports]
dhcp4: true